
CS103 Handout 48
Winter 2018 March 9, 2018

Problem Set 9

What problems are beyond our capacity to solve? Why are they so hard? And why is anything that
we've discussed this quarter at all practically relevant? In this problem set – the last one of the quar-
ter! – you'll explore the absolute limits of computing power.

Before attempting any of the problems on this problem set, we strongly recommend reading over the
Guide to Self-Reference and Guide to the Lava Diagram that are available on the course website,
which provide a ton of extra background that you might fnd useful here.

As always, please feel free to drop by ofce hours or ask questions on Piazza if you have any ques-
tions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, March 16th at 2:30PM

Because this problem set is due on the last day of class, no late days
may be used and no late submissions will be accepted. Sorry about that!
On the plus side, we'll release solutions as soon as the problem set
comes due.

2 / 10

Problem One: Isn’t Everything Undecidable?
(We recommend reading the Guide to Self-Reference on the course website before attempting this problem.)

In lecture, we proved that ATM and the halting problem are undecidable – that, in some sense, they’re be-
yond the reach of algorithmic problem-solving. The proofs we used involved the nuanced technique of
self-reference, which can seem pretty jarring and weird the frst time you run into it. The good news is
that with practice, you’ll get the hang of the technique pretty quickly!

One of the most common questions we get about self-reference proofs is why you can’t just use a self-ref-
erence argument to prove that every language is undecidable. As is often the case in Theoryland, the best
way to answer this question is to try looking at some of the ways you might use self-reference to prove
that every language is undecidable, then see where those arguments break down.

To begin with, consider this proof:

Theorem: All languages are undecidable.

Proof: Suppose for the sake of contradiction that there is a decidable language L. This
means there’s a decider for L; call it inL.

Now, consider the following program, which we’ll call P:

int main() {
 string input = getInput();

 /* Do the opposite of what's expected. */
 if (inL(input)) {
 reject();
 } else {
 accept();
 }
}

Now, given any input w, either w ∈ L or w ∉ L. If w ∈ L, then the call to inL(input)
will return true, at which point P rejects w, a contradiction! Otherwise, if w ∉ L, then
the call to inL(input) will return false, at which point P accepts w, a contradiction!

In both cases we reach a contradiction, so our assumption must have been wrong.
Therefore, no languages are decidable. ■

This proof has to be wrong because we know of many decidable languages.

i. What’s wrong with this proof? Be as specifc as possible.

Go one sentence at a time and check that each claim is correct. Something is fshy here.

3 / 10

Here’s another incorrect proof that all languages are undecidable:

Theorem: All languages are undecidable.

Proof: Suppose for the sake of contradiction that there is a decidable language L. This
means that there is some decider D for the language L, which we can represent in soft-
ware as a method willAccept. Then we can build the following self-referential pro-
gram, which we’ll call P:

int main() {
 string me = mySource();
 string input = getInput();

 /* See whether we'll accept, then do the opposite. */
 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

Now, given any input w, program P either accepts w or it does not accept w. If P ac-
cepts w, then the call to willAccept(me, input) will return true, at which point P
rejects w, a contradiction! Otherwise, we know that P does not accept w, so the call to
willAccept(me, input) will return false, at which point P accepts w, a contradic-
tion!

In both cases we reach a contradiction, so our assumption must have been wrong.
Therefore, no languages are decidable. ■

It’s a nice read, but this proof isn’t correct.

ii. What’s wrong with this proof? Be as specifc as possible.

4 / 10

Many of the examples we’ve seen of undecidable languages involve checking for properties of Turing ma-
chines or computer programs, which might give you the sense that every question you might want to ask
about TMs or programs is undecidable. That isn’t the case, though, and this question explores why.

Consider the following language L:

L = { ⟨P⟩ | P is a syntactically valid C++ program }

Below is a purported proof that L is undecidable:

Theorem: The language L is undecidable.

Proof: Suppose for the sake of contradiction that L is decidable. That means that there’s
some decider D for L, which we can represent in software as a function isSyntacti-
callyValid that takes as input a program and then returns whether that program has
correct syntax. Given this function, consider the following program P:

int main() {
 string me = mySource();

 /* Execute a line based on whether our syntax is right. */
 if (isSyntacticallyValid(me)) {
 oops, this line of code isn’t valid C++!
 } else {
 int num = 137; // Perfectly valid syntax!
 }
}

Now, either this program P is syntactically valid or it is not. If P has valid syntax, then
when P is run on any input, it will get its own source code, determine that it is syntacti-
cally valid, then execute a syntactically invalid line of code – a contradiction! Other-
wise, if P is not syntactically valid, then when P is run on any input, it will get its own
source code, determine that it is not syntactically valid, at which point it executes a
perfectly valid line of C++ code – a contradiction!

In either case we reach a contradiction, so our assumption must have been incorrect.
Therefore, L is undecidable. ■

This proof, unfortunately, is incorrect.

iii. What’s wrong with this proof? Be as specifc as possible.

5 / 10

Problem Two: Password Checking
(We recommend reading the Guide to Self-Reference on the course website before attempting this problem.)

If you're an undergraduate here, you've probably noticed that the dorm staf have master keys they can
use to unlock any of the doors in the residences. That way, if you ever lock yourself out of your room,
you can, sheepishly, ask for help back in. (Not that I've ever done that or anything.) Compare this to a
password system. When you log onto a website with a password, you have the presumption that your pass-
word is the only possible password that will log you in. There shouldn't be a “master key” password that
can unlock any account, since that would be a huge security vulnerability. But how could you tell? If you
had the source code to the password checking system, could you fgure out whether your password was
the only password that would grant you access to the system?

Let's frame this question in terms of Turing machines. If we wanted to build a TM password checker,
“entering your password” would correspond to starting up the TM on some string, and “gaining access”
would mean that the TM accepts your string. Let's suppose that your password is the string
iheartquokkas. A TM that would work as a valid password checker would be a TM M where ℒ(M) =
{iheartquokkas}: the TM accepts your string, and it doesn't accept anything else. Given a TM, is there
some way you could tell whether the TM was a valid password checker?

Consider the following language L:

L = { ⟨M⟩ | M is a TM and ℒ(M) = {iheartquokkas} }

Your task in this problem is to prove that L is undecidable (that is, L ∉ R). This means that there's no al-
gorithm that can mechanically check whether a TM is suitable as a password checker. Rather than drop-
ping you headfrst into this problem, we've split this problem apart into a few smaller pieces.

Let's suppose for the sake of contradiction that L ∈ R. That means that there is some function

bool isPasswordChecker(string program)

with the following properties:

• If program is the source of a program that accepts just the string iheartquokkas, then calling
isPasswordChecker(program) will return true.

• If program is not the source of a program that accepts just the string iheartquokkas, then call-
ing isPasswordChecker(program) will return false.

We can try to build a self-referential program that uses the isPasswordChecker function to obtain a con-
tradiction. Here's a frst try:

int main() {
 string me = mySource();
 string input = getInput();

 if (isPasswordChecker(me)) {
 reject();
 } else {
 accept();
 }
}

This code is, essentially, a (minimally) modifed version of the self-referential program we used to get a
contradiction for the language ATM.

(Continued on the next page.)

6 / 10

i. Prove that the above program P is not a valid password checker.

What is the defnition of a password checker? Based on that, what do you need to prove to show that P is
not a password checker?

ii. Suppose that this program is not a valid password checker. Briefy explain why no contradiction
arises in this case – no formal justifcation is necessary.

A good question to think about in the course of answering part (ii) of this problem: this program is very
close to the one from the proof that ATM is not decidable. Why do you get a contradiction in the original
proof that ATM is undecidable? Why doesn’t that same contradiction work here?

Ultimately, the goal of building a self-referential program here is to have the program cause a contradic-
tion regardless of whether or not it's a password checker. As you've seen in part (ii), this particular pro-
gram does not cause a contradiction if it isn't a password checker. Consequently, if we want to prove that
L ∉ R, we need to modify it so that it leads to a contradiction in the case where it is not a password
checker.

iii. Modify the above code so that it causes a contradiction regardless of whether it's a password
checker. Then, briefy explain why your modifed program is correct. (No formal proof is neces-
sary here; you're going to do that in the next step.)

Follow the advice from the Guide to Self-Reference. Write out a specifcation of what your self-referential
program is trying to do. Based on that, craft code for each of the two cases.

iv. Formalize your argument in part (iii) by proving that L ∉ R. Use the proof that ATM ∉ R as a tem-
plate for your proof.

Problem Three: LD, Cantor’s Theorem, and Diagonalization
Here's another perspective of the proof that LD ∉ RE. Suppose we let TM be the set of all encodings of
Turing machines. That is,

TM = { ⟨M⟩ | M is a TM }

We can then defne a function L̂ : TM → ℘(TM) as follows:

L̂(⟨M⟩) = ℒ(M) ∩ TM

This question explores some properties of this function.

i. Briefy describe, in plain Ennglish, what L̂(⟨M⟩) represents.

You shouldn't need more than a sentence.

ii. Trace through the proof of Cantor's theorem from the Guide to Cantor's Theorem, assuming that
the choice of the function f in the proof is the function L̂. What is the set D that is produced in
the course of the proof? Why?

7 / 10

Problem Four: Double Verifcation
This problem explores the following beautiful and fundamental theorem about the relationship between
the R and RE languages:

If L is a language, then L ∈ R if and only if L ∈ RE and L ∈ RE

This theorem has a beautiful intuition: it says that a language L is decidable (L ∈ R) precisely if for every
string in the language, it's possible to prove it's in the language (L ∈ RE) and, simultaneously, for every
string not in the language, it's possible to prove that the string is not in the language (L ∈ RE). In this
problem, we're going to ask you to prove one of the two directions of this theorem.

Let L be a language where L ∈ RE and L ∈ RE. This means that there's a verifer Vyes for L and a verifer
Vno for L. In software, you could imagine that Vyes and Vno correspond to methods with these signatures:

bool imConvincedIsInL(string w, string c)

bool imConvincedIsNotInL(string w, string c)

Prove that L ∈ R by writing pseudocode for a function

bool isInL(string w)

that accepts as input a string w, then returns true if w ∈ L and returns false if w ∉ L. Then, write a brief
proof explaining why your pseudocode meets these requirements. You don't need to write much code
here. If you fnd yourself writing ten or more lines of pseudocode, you're probably missing something.

The theorem you proved in this problem is extremely useful for building an intuition for what languages
are decidable. You'll see this in the next problem.

What other constructions have we done on verifers? How did they work?

8 / 10

Problem Five: The Lava Diagram
Below is a Venn diagram showing the overlap of diferent classes of languages we've studied so far. We
have also provided you a list of twelve numbered languages. For each of those languages, draw where in
the Venn diagram that language belongs. As an example, we've indicated where Language 1 and Lan-
guage 2 should go. No proofs or justifcations are necessary – the purpose of this problem is to help you
build a better intuition for what makes a language regular, R, RE, or none of these.

We strongly recommend reading over the Guide to the Lava Diagram before starting this problem.

To submit your answers, edit the fle LavaDiagram.h in the src/ directory of the starter fles for this
problem set.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { an | n ∈ ℕ }

4. { an | n ∈ ℕ and is a multiple of 137 }

5. { 1n+1m 1≟ n+m | m, n ∈ ℕ }

6. { ⟨M⟩ | M is a Turing machine and ℒ(M) ≠ Ø }

7. { ⟨M⟩ | M is a Turing machine and ℒ(M) = Ø }

8. { ⟨M⟩ | M is a Turing machine and ℒ(M) = LD }

9. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M accepts all strings in its input alphabet of length at most n }

10. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M rejects all strings in its input alphabet of length at most n }

11. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M loops on all strings in its input alphabet of length at most n }

12. { ⟨M₁, M₂, M₃, w⟩ | M₁, M₂, and M₃ are TMs, w is a string, and at least two of
 M₁, M₂, and M₃ accept w. }

9 / 10

Problem Six: The Big Picture
We have covered a lot of ground in this course throughout our whirlwind tour of computability and com-
plexity theory. This last question surveys what we have covered so far by asking you to see how every-
thing we have covered relates.

Take a minute to review the hierarchy of languages we explored:

REG ⊊ CFL ⊊ P ≟ NP ⊊ R ⊊ RE ⊊ ALL

The following questions ask you to provide examples of languages at diferent spots within this hierarchy.

i. Give an example of a regular language. How might you prove that it is regular? You don’t need to
actually prove that it’s regular – just tell us what proof technique you’d use.

ii. Give an example of a context-free language is not regular. How might you prove that it is context-
free? How might you prove that it is not regular? Just tell us what techniques you’d use for these
proofs; no formal proof is actually necessary here.

iii. Give an example of a language in P.

iv. Give an example of an NP-complete language. (We’ll talk about this on Wednesday.)

v. Give an example of a language in RE not contained in R. How might you prove that it is RE?
How might you prove that it is not contained in R? Again, we just need to proof techniques you’d
use, not actual formal proofs.

vi. Give an example of a language that is not in RE. How might you prove it is not contained in RE?
As before, we’re just looking for proof techniques, not actual proofs.

Problem Seven: Class Participation Opt-Out
You have the option to choose to shift the 5% weight of your grade that’s normally associated with your
class participation onto the fnal exam. If you do this, you will receive no credit based on participation,
and your fnal exam will be worth 40% of your grade rather than the regular 35%.

If you’d like to opt out of your class participation grade and shift the weight to the fnal, follow this link
and fll out the form. Do not submit your answer through GradeScope; Keith and Cynthia won’t see it.

If you’d like to keep 5% of your grade for participation, you don’t need to do anything. You’re all set!

https://docs.google.com/forms/d/e/1FAIpQLSdjYKor9b_y561gs1cx6r28EjlWKuUy2QyEVzOHoP14B6CdWw/viewform

10 / 10

Optional Fun Problem: Quine Relays (1 Point Extra Credit)
Write four diferent C++ programs with the following properties:

• Running the frst program prints the complete source code of the second program.

• Running the second program prints the complete source code of the third program.

• Running the third program prints the complete source code of the fourth program.

• Running the fourth program prints the complete source code of the frst program.

• None of the programs perform any kind of fle reading.

In other words, we'd like a collection of four diferent programs, each of which prints the complete source
of the next one in the sequence, wrapping back around at the end. You can download starter fles for this
assignment from the course website and should submit your fles through GradeScope.

This is actually a really fun problem to try. Once you fgure out the trick, it’s not that hard to code it up.

Grand Challenge Problem: P ≟ NP (Worth an A+, $1,000,000, and a Ph.D)
Prove or disprove: P = NP.

Take ffteen minutes and try this. Seriously. And if you can’t crack this problem, feel free to submit your
best efort, or the silliest answer you can think of.

